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The transcendental method in the theory of neutron 
slowing down 
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Depanment of Nuclear Engineering, University of Montenegro, Yugoslavia 

Received 19 August 1991, in final form 20 January 1992 

Abstract. The transcendent+method for finding the exact analytical closed-form Solution 
to the linear unidimensional integral equation of neutron slowing down with energy- 
dependent cross-section in an infinite homogeneous medium is studied in some detail. An 
original method of genesis of the isomorphic integral farm of the process, and genesis of 
the general form of the analytical solution is applied. This, together with the exact solution 
of the transcendental equation of order one also determined, constitutes the exact solution 

and far different moderator masses show agreement with more conventional solutions, like 
those of Teichmann and Sengupta. The conditions for the existence of the exact solutions 
are discussed. 

Of!h? pmb!em. The !!.me-cz! 'PS"!!S ch?Eincd fclr diffprpnt mlgnimdes n l  lhrnrp!inn rater 

1. Iutroduction 

The transcendental method for obtaining meaningful results from analytical study of 
the time-independent slowing down equation for neutrons in an infinite moderator 
consisting of heavier nuclei with isotropic elastic scattering and with energy-dependent 
cross-section is an important one. 

The present paper researches possibilities for an analytical solution of the linear 
integra! unidimensional equation of slowing down of neutrons because the former 
methods (Davison 1960, 1954, Placzek 1946, Verde 1947, Keane 1961, Dawn 1972, 
Barnett 1974 and Sengupta et al 1974) cannot express the solution by an analytical 
closed form, and only the collision density over the first few collision intervals can be 
derived exactly. 

The slowing down equation with energy-dependent cross sections has not yet been 
solved. Bednarz (1961) obtained an analytical solution by applying a method which 
is mathematically quite difficult. Dawn (1976) obtained analytical solutions of special 
cases of this equation. 

Under the assumptions that the nuclei are considered at rest before the collision 
and that the scattering is isotropic in the centre-of-mass system, the well-known 
time-independent neutron slowing down equation for the total collision density, F ( u ) ,  
in the lethargy domain is 

t Present address: Po Box 120, 85310 Budva, Yugoslavia. 
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2970 S M Perovich 

where the symbols have the following meaning: 

01 = ( ( A -  I)/(A+l))' A = M / m  

where M is the mass of the nucleus, and m is the neutron mass; 

p = u / ( l - u )  

a = -In(u) 

T J U )  = U u ) / % ( u )  

T J U )  = 1 - YJ U )  
Z,(u) is the total cross section. The subscripts s and a refer to the elastic and absorption 
collision, respectively; S ( u )  is the Dirac delta function and denotes the energy point 
so'.rce. 

In this presentation, equation ( 1 )  has been anglytically solved. A Laplace transform 
has been applied for the genesis of the isomorphic model of the process. For the 
generated isomorphic model of the process a solution has been proposed in the 
exponential form. An unknown exponent in the suggested solution represents analytical 
solutions of a transcendental equation'of order one which is analytically solvable. 

An example for analytical solution of the corresponding transcendental equation 
is given in section 8. 

The analytical solutions which have been obtained, apart from theoretical values 
in academic discussions, have also a practical application since they are far simpler, 
effective and easy to examine than more conventional solutions. 

2. Genesis of the isomorphic model of the process 

Applying a Laplace transform it is possible to modify integral equation (1) into the 
isomorphic model of the process which is described by Volterra's integral equation: 

F(u) =&(U)- 1; du'fo(u-u')T.(u')F(u') (2) 

where 

f u s ( ~ ) = f o ( ~ ) + ~ ( ~ ) .  (3) 

fo(u) is the well-known Teichmann (1960) series for collision density, and 
[ " l a ]  

fo(u)=( l+P)e@" 1 ( -~)"~"e-""(u-na)"/n!  
"-0 

[ " t o1  
+e@" 1 ( - 1 ) " ~ "  e-""@(u - na)"-' / (n - I ) !  

" - 1  

where [u/a] denotes the greatest integer less than or equal to ula. 

Prooj The Laplace transform of the integral equation (1) 

(4) 
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where 

may be written in the form 

where 

and 

Now, by using the convolution theorem (Murray 1965) equation (6) in the lethargy 
domain takes the form 

which coincides with equation (2). 
From equation ( l ) ,  we have for U = 0 

F*(o)+S(o)=(l+p)Y,(o)+S(o) 

and from equation (7) 

Obviously, equations (8) and (9) are identical. This is, of course, expected since 
equation (7) is an equivalent form of equation ( 1 ) .  Further, from equation (7) we have 

F ( u ) = f , , ( u )  forYa(u) =O. 

Now we have completed our proof. 0 
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3. Some important properties of the function hOs(u) 

The interesting function&( u )  is an analytical solution of equation (1) in the particular 
case for Y.(u)=O. Namely, the function&(u) is given by 

f o a ( u ) e " = ( l + P )  I :_~fa. (U' )eY'dU'+S(u)eU (10) 

or 

f o s ( u ) - p  I :_~foa (u ' )du '= l+S(u ) .  

Equation (10) is an equivalent form of equation (IO). 
The function h(u) satisfies the following integral equation: 

M U ) - B  Ju:ah(u,)du,=l. 

The Laplace transform of equation (IO) (or (IO')) takes the form 

and 

r.. .. n &L:^ --..-. :-.. - ~ -  L^ A.&-.. ^^ rur 3 / p, ,I,,> cquarru,, La,, "C IGWLLLLGIL a> 

m m 

pos ( s+p)=(1+p)  ( - 1 ) " ~ "  e-"@ e-""/s"+'+ 1 (-I)"@" e-""pe-""'/s". (13 )  
n=a  " = O  

Of course, a condition under which the result is valid is that the series (13) is convergent 
for s > p. Then, we can invert term by term to obtain, in the lethargy domain 

&(U) e @ " = ( I + p )  x ( - 1 ) " ~ "  e-n'"B(u-na)"/n!+S(u) 
[ " I01 

n=a 

Since (Marray !OSS) 

e - " ~ ' / s " " ~ ( u - n a ) " H ( u - n a ) / n !  

e-""'/s" +(u-na)'-'H(u -na)/(n - I ) !  

Where Heaviside's unit function is defined as 

for u > no 
for U < na. 

H ( u - n a )  = 

From the relation in equation (14) foa(u) can be expressed as 

ffs(u) = (1 + p )  eS"R(u) +eSYR'(u)+ S( u )  
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where the series R(u)  is of the form 

[ " l a ]  
R(u)=  (-1)"p" e-"@(u-na)"/n! (16) 

The function R( U )  can be written more explicitly, step-by-step, for any collision interval: 

f o r 0 6  u < a 

for a s  u < 2a 

for 2a s U < 3 a  

n = o  

R(u) = 1 

R(u)  = 1-p e-"O(u - a )  

R(u) = 1-p e-"O(u -a)+p2e-2"P(u-2a)'/2! 

n = k  

for kas u < ( k + l ) a  R(u)=  1 (-1)"p" e-""#(u-na)"/n! (17) 
n=0 

Since [u/a] denotes the greatest integer less than or equal to u/a, and consequently 
for ka S U < (k+ l )a ,  [ u/a] = k, k = 0, 1,2,. . . . In this way, we can determine, step-by- 
step, the exact function fo(u), for any collision interval. 

Examining this scheme, in the limiting case of U + ka, it can be seen that 

where 

3 = -p e-'@. 

Since, for U + ka, we have 

because the upper limit of the sum ( [ u / a ] )  is not a variable used in the derivative, 
since [U/ a]  = k for any collision interval ka s U < (k+ 1)a. Obviously, when U + ka, 
then [u / a ]=k ,  k = O , 1 , 2  ,.... 

r.. .I.:̂ ... ... ̂ f-rl 
111 C l U D  way W G  ,U," 

The function fo6(u)  is a dissonant (changes its form over successive collision 
intervals) and discontinuous function (in the U = a, f o ( a - )  -fo(a') = p )  which after 
several initial collision intervals becomes constant; namely, for lethargies U 3 6a 

f o ( u )  = 1/(1-aP) = I/[. (21) 

fXu)=PsO(u) -Pfo (u  - a )  (22) 

f o ( u )  = (1+p) eP"R(u)+eP"R'(u). (23) 

The differential equation, obtainable by differentiation of the initial model (1 1) becomes 

where&(u) is defined in (15) as 

Thus, from equations (22) and (23) (and from (16)) we find 

R'(u)= -p e-'OR(u -a) 
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and 

R ( ~ ) + P e - ' ~ j : - ' R ( u ' ) d u ' = l  

Integral equations (1 1) and (24) are particular cases of the Fredholm integral equation. 
Integral equation (11) has a unique, positive, and continuous solution in the form 
(23), for U > a. The uniqueness property can be proved by applying the theorem of 
Banach (model of the fixed point in matrix space). In a similar way, equation (24) 
has a unique, positive and continuous solution of the form (16), for U > 0. 

On the other hand, integral equation (1 1) has, also, a particular solution of the form 

fo,(u) = ut  (25) 
and the particular solution of the integral equation (24) is 

R , ( u ) = ( l / t )  e-O"-(op/[) 

On the basis of the theory of Fredholm integral equations (Jorgens 1982, Fenuo 1984, 
Presdorf 1988) (i.e. the existence of uniqueness properties for the solution of the 
integral equation) it may be seen that equation (11) has a unique solution under the 
condition ap  < 1. Consequently, the function fo( U )  is unique, and there exists a value 

suggests that uo is 6a for different moderators. The condition ap  < 1 (or e" > a + 1) is 
always satisfied for all mass numbers. 

6a the function fo( U )  becomes a constant function of the 
form 

of !ethargy !Lo when, for !? > ?do, &!U) =&,(U! and R!U) = Rp(u!: Nnmerica! research 

Finally, for lethargies U 

&(U)= Ut= l / ( l - a p )  

and R ( u )  becomes an exponential function of the form (26). 

4. The multiple iteration method 

With successive iteration of equation (7) a solution can be found in the following form 

F(u) =fob(u)  - I"fo(u - u')ul.(u')fod(u') du'+ fo(u - u')ula(u' )  du' 
0 1: 

x (:'fa(u'- u")V.(u")F(u") du". 

Continuing the iteration in equation (26'), we find 

where 

and 
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Substituting the expression (3) forfoa(u) into equation (27) and integrating, we obtain 
m 

F(u)=(1-Ya(0)) E (-l)“K,(u)+S(u) (29) 
,,=0 

where 

K,(u)=IYf,(u-u‘)Ylg(ui)fo(u’)du’ 0 (30) 

K J u )  = (“fo(u - u’)Yla(u’)Kn-,(u‘) du‘ for n 3 2. 
0 

By using the elementary modification of equation (29), F(u)  can be expressed as 

F(u) = S(u)+( l  -Yla(0)) fo(u)[ 1-1: J(u, U’) dun+[: J(u,  U’) du’Io”’J(u’, U”) du” 

U’ Y ”  

- 1” J ( u ,  U’) du’ In J(u’, U”) du” J(u”, U”’) du”’+. . . (31 )  
.a - ”  - Y  

where 

This is the most general complete expression of the solution derived by the multiple 
iteration method in the isomorphic model of the process. The well-known function 
&(U) is the result due to Teichmann (1960) by applying the method of the Laplace 
transform. 

5. Determination of the iteration coefficients 

To simplify the above equation we introduce from (22) 

fo(u)=fo(u+a)-(1/P)fXu +a) 

into the equation for K , ( u )  and integrating by parts we have 

I:fo(u-u’)Y.r(u’) du’ 

= )fo(a)w.X U) - ( U P  )fo( 11 + a )yado) 

(33) 

where 
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Repeating this substitution and integrating by parts, finally a functional K , ( u )  can 
be obtained in the form 

[o"fo(u-u')ly~,.(u') du' 

where 

k = 6  

D,. = [ ( W 5 ) -  k = 2  1 ( k -  l ) f O ( u + k a ) ] / P 2  

4. = [(20/5) -f(u + 3a)  -3f0(u + 4a)  - 6f0( U + Sa) - 10fo(u + 6a)]/P' 

D3. = [(15/5)-h(u +4a)-4fo(u+5a)- 10fo(u+6a)]/P4 

n. = r(A(c1- u.,+ s n )  -5 f0 ;u+6n) j / f i 5  

Ds. = [(1/5)-h(u+6a)l/P6 

(38) 

-4" L \ Y I 5 /  ,U\- 

D. = D.. for U = 0. 

The coefficient D, and D.. vanishes when n > 6 since &(U) = 1/[ for U 36a .  
Finally equation (30) for functional K , ( u )  can be reduced to a simpler form: 

where 
,,=5 

(40) .TI I _ . \ -  v * , n + l r n . T , l " ) , . . ,  ,..,.T,l?I),A,, 
y D ( u I z  L (-1, LU"raf \ ~ l - ~ n u ~ ~ I y . d  I'JlJ. 

" = I  

This, together with the series determined in (29), constitutes the exact solution of 
the problem. But the slowing down equation (1) or (7) with energy-dependent cross 
section has not yet been solved for all magnitudes of absorption, since this exact 
solution in series form is mathematically quite difficult, and practically, is impossible. 
The solution required for the estimation of terms of series (29) becomes hopelessly 
involved. 

6. General analytical transcendental scheme 

in this note we deveiop a generai transcendentai method that is appiicabie For iarge 
absorption and for arbitrary energy-dependent cross sections. 

The suggested transcendental method is based on the basic premises: exponential 
form of the collision density and analytic solvability of the corresponding transcenden- 
tal equation of order one. 
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The solution in series form in equation (31) can be formally rewritten as 

where 

But this is correct only for the first collision interval, since for O <  U < a 

f , ( u ) = ( l + p )  e'' and Jo(u') = (1 +p)'U,(u'). (42) 
For the first collision interval initial model ( 1 )  becomes 

F ( u ) = ( l + p )  1: F(u' )e" '~" 'Y . (u ' )du '+6(u) .  (43) 

Equation (43) is an ordinary differential equation, and has analytical solution of the 
fu m 

Comparing equations (41) and (44) we find the relationship 

exp( -1: &(U') du') 

=[l-l:Jo(u')du'+ lo" J,(u')du' 1: Jo(u")du" 

I - 1," Jo( U') du' 1;' Jo( U") du" 1; Jo( U"') du"' + . . . (45) 

Again, this is correct only for the first collision interval when J(u, U') = Jo(u')  = 
( 1  + p)Y*( U'), and, consequently 

( J ( u ,  U')); = J / J U ( J ( U ,  U')) = J / J U ( J , ( U ' ) )  =o. 
However, in the general case 

(J(u, u ' ) ) : # o .  

F ~ ( u ) = ( l - Y , ( O ) ) f , ( u )  exp(-&.S(u))+6(u) 

But, of course, we can also assume a general solution in the form, 

(47) 
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where 

and E. is the dissonant, real constant. Namely, E. is the constant in the area Au around 
the lethargy U. Thus, 

%+AU - EW-AU = P E  (49) 
and the right-hand side of the above equality tends to zero as Au tends to y, where y 
is an arbitrary small positive, real number, and 

yc< a. (50) 

For the first collision interval 

E. = 1 for0 < u < a. (51) 

The hypothesis (47) is crucial for the transcendental method in the theory of slowing 
down. But, generally, in equation (47) the collision density is represented in a particular 
way. That, of course, may or may not be true. It is important that this proposal is 
permissible. 

The suggested solution (47) satisfies the differential equation obtainable by 
differentiation of the initial model (1): 

Fb(u)+F, (u )=  ( l + P ) Y , ( u ) F ( u ) - B q , ( u - a ) F ( u  - a ) + S ’ ( u ) + S ( u )  ( 5 2 )  

where 

F s ( u ) = F ( u ) + S ( u )  (53) 

F ’ ( u ) + F ( u )  = ( 1  + P ) Y U , ( u ) F ( u ) - P Y , ( u  - a ) F ( u - a ) .  (54) 

or for U > 0 (52) becomes 

Substituting the result (47) for F ( u )  in equation (54), we obtain: 

where 

Z(u)  = E.S(U) -E._ .S(~  - a )  

and from the above equation we have 

Z(u )+  E._.S(U - a )  

S(U) 
E“ = (57) 



7. The final form of the solution for collision density 

Finally, it is possible to get the solution (47) to the slowing down equation (1 )  with 
energy-dependent cross sections written in the form 

F( U )  = F(u - a )  exp(-Z(u)) fo ru>O 
fo(u - a 1 

or, repeating the substitution method for lethargies no < U < ( n  + l )a ,  the collision 
density has the form 

where F,( U - no) is the well-known solution for the first collision interval. The method 
of obtaining F,(u) is given in section 6 in equation (U), namely, 

(66) Fl(u - n a )  = ( l + P ) ( l  -Ya(0)) exp(P(u - n a ) - ( l + P ) I ( u  - n o ) )  

where 

l(u- no) = 'Ya(u' )  du' 

.-> T I  ..., :. &L_ -..-I. ..:--I -1 ----...-. --I... :-- -'-.L- .-"-----A ^^.^ 1 I._ an" & ( U  - nu, 18 LIK ariaiyrr~ar cicrricriiaiy SUIULIUII VI L L ~ C  L ~ ~ C ~ S C C - C I U C L I L ~ ~  cquarion 
(61) (see section 8).  

Equation (65) is the exact analytical closed-form solution to the slowing down 
equation with energy-dependent cross section for heavy nuclei and for all magnitudes 
of absorption. The result (65) is very important because it is not mathematically difficult. 
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The solution (65), together with the exact solution of the transcendental equation 
determined in (61), constitutes the exact solution of the problem for arbitrary energy- 
dependent cross section and for different moderators. 

The method for obtaining the analytical solution of the transcendental equation 
(61) is given in Perovich (1990, 1991) and also in the next section. 

8. The analytical solution of the transcendental equation (61) 

The transcendental equation (61) can be identified with an integral equation of type 

@ ( Y )  = B d u )  1- @ ( t )  d t  (67) 
Y-BoIuI 

where @ ( y )  is an arbitrary real function and y >  B,(u).  

analytical unique solution (Perovich 1991) is the following series: 
This integral equation is analytically solvable using a Laplace transform. The 

[ V l B , I U I l  

@ ( Y ) = @ o  1 (-l)"B;(u)(y-nBo(u))"/n! (68) 
n = o  

On the other hand, the integral equation (67) has a particular solution in the form 

@&) =@poexp(-Zl(u)y) (69) 

Zdu) = Bl(u)  exp(Bdu)Z,(u)). (70) 

which satisfies equation (67) if and only if Z , ( u )  satisfies the transcendental equation 

Finally, for the value y > yo (since for y > y o  @ ( y )  = @ , ( y ) )  it is possible to  establish 
the equality 

@(Y - B O ( U ) ) / @ ( Y )  =exp(Bn(u)Z,(u)) (71) 

or 

Zl(u)=(l /Bo(u))  M@(Y - B d u ) ) / @ ( ~ ) l  (72) 

and from equations (63) and (72) we obtain 

Z ( u )  = (Adu)/Adu))+ln[@P(y - B d u ) ) / @ ( ~ ) l  (73) 

where the function @ ( y )  given in (68) can be rewritten as 
[VI 

n l n  
@(Bn(U)y) = @ o  1 (-1)"(Bi(u)Bo(u))"(y - n ) " / n !  (74) 

and 

Z ( u )  = (A,(u)/Adu))  + W @ ( B d u ) ( y -  l ) ) / @ ( B d u ) ~ ) l .  (75) 

9. Sowing down wiiii constant cross section 

In this section we present a complete, exact transcendental theory of neutron slowing 
down in a single element with isotropic elastic scattering in the centre-of-system and 
with constant cross section. 
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In this case the isomorphic model of the process (7) becomes 

F(U) = f o a ( ~ ) -  CO f o ( ~  - u')F( U') du' (76) 1: 
where *,,(U) = co = constant is the absorption rate. 

The integral equation (76) is analytically solvable. Namely, applying the method 
of the Laplace transform on integral equation (76), it is possible to obtain an analytical 
solution of the form 

F J u )  = (bRdu)+RXu)) exp((b- 1)u) (77) 

where b = ( l + p ) ( l - c o )  and 
l " / O I  

,2=0 
R,(u)= 1 (-1)"b" e-""b(u-na)"/n! (78) 

where [ u l a ]  denotes the greatest integer less than or equal to u / o .  
The solution (77) is the Placzek function obtained from the Teichmann series. 
But the integral equation (76) can also be analytically solved by  application of the 

transcendental method. In this case, for lethargies a < U < 2a, the transcendental model 
(61) can be rewritten as 

&(U) = N u )  exp(Bo(u)Z,(u)) (79) 

S ( u )  = ( ( 1 + p )  eP"co/fo(u))[-P e-OP(u - a)"2a e-",(u - a ) + u ]  

where 

S (  u - a )  = (1  + p ) c o (  u - a )  (80) 

= S( )/ s'( U )  
where 

S' (u )  = (1  +p)co+(Pf(u - a)/fo(u))[S(u)-co-S(u-a)l  
where the function fo( U )  is defined in equations (4) and (14). 

&(U)= P(1 -c,)(fo(u - a ) / f o ( u ) )  exp(-S(u - a ) +  C , S ( u ) / S ' ( u ) )  

where C, = (1 + p ) c o  - pfo(u - a) / fo (u ) .  

%.e caeEcient - R i ( U )  is 

(81) 

For the second collision interval E.-. = 1. 
Having obtained the exact value of Z , ( u )  from equation (79) we now proceed to 

Now, the general transcendental scheme for the second collision interval becomes 
develop a general scheme for obtaining an analytical closed-form solution. 

Of course, in the lethargy interval a < u < 2 a ,  Z , ( u )  is the,exact solution of the 
transcendental equation (79) and 

Z,(u)=(Z,(~)+Ai(u))Bo(u)  (83) 

A , ( u )  = (1  +P)c,-pfo(u - a ) / f d u )  - S(u - a ) S ( u ) / y ( u )  

where 
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Table 1. Comparisons between Placzek (Teichmann) and present solution. 

Equation (77) Equation (82) Equation (94) 
A CO u / a  FJu) M U )  Go(*) 

2 0.0001 1.1 
1.3 
1.5 
1.7 
1.9 

I2 0.0001 1.2 
1.4 
1.6 
1.8 
2.0 

50 0.0001 1.2 
1.4 
1.6 
1.8 
2.0 

1.361029 
1.370725 
1.3771 84 
3.380009 
1.378770 

5.986350 
6.254024 
6.418465 
6.432793 
6.236403 

23.59868 
24.92845 
25.76308 
25.83322 
24.77766 

1.361029 
1.370725 
1.377184 
1.380010 
1.378777 

5.98630 
6.25400 
6.41850 
6.43300 
6.23650 

23.59870 
24.92852 
25.76300 
25.83311 
25.7801 

-1.19602E-07 
6.47645E-07 
7.00167E - 07 

-3.05868E - 06 
-2.94455E-06 

-3.70529E -06 
-6.25670E-07 

2.46440E-06 
3.68649E - W 
l.23932E - 05 

-5.71954E - 07 
5.08553E - 06 
7.48569E - 05 
3.37631 E -07 
8.46375E-05 

2 0.0001 2.2 1.377302 1.37730 -5.45507E - U6 
2.4 1.377621 1.37762 -5.48874E-06 
2.6 1.377593 1.37761 -5.33532E-06 
2.8 1.377404 1.37740 -5.01503E-06 

12 0.0001 2.2 6.313301 6.31330 3.20922E-07 
2.4 6.347757 6.34776 1.775888-06 
2.6 6.348347 6.34835 2.99369E-06 
2.8 6.331448 6.33145 3.14782E - 06 
3.0 6.326562 6.32650 3.11351E-05 

_ _  5n O.OOO! 2.2 .. 25~20122 .. . ... 2s.2012 5.731 12E-06 
2.4 25.39747 25.3975 1.26634E - 06 
2.6 25.40037 25.4001 1.52236E - 05 
2.8 25.30001 25.300 1.60032E - 05 

Equation (86) 
A CO u / a  FAu) FAu) Gdu) 

2 0.0001 3.2 
3.4 
3.6 
3.8 

12 0.0001 3.2 
3.3 
3.5 
3.7 
3.9 

50 0.0001 3.2 
3.4 
3.6 
3.8 

1.377231 
1.377154 
1.377065 
1.376978 

6.335561 
6.336478 
6.334671 
6.332228 
6.332200 

25.32868 
25.33166 
25.31454 
25.30598 

1.37710 
1.37716 
1.37707 
1.376989 

6.33550 
6.33650 
6.33465 
6.3 3 2 2 3 
6.33200 

25.330 
25.331 
25.315 
25.306 

-5.01809E-07 
-1.64460E -06 
-3.03511E-07 

5.75688E-07 

-9.46459E-05 
-1.85559E-06 
-9.82439E -06 

6.MOZE -06 
5.68803E-06 

-1.594758 -05 
-2.91 l89E -05 
-1.13752E-06 

1.52994E -05 
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Equation (77) Equation (85)  Equation (94) 
A CO u t a  FJu) Gdu) 

2 0.0001 4.2 
I 4.4 

4.7 
4.9 

12 0.0001 4.0 
4.3 
4.5 
4.7 
4.9 

50 0.0001 4.2 
4.4 
4.6 
4.8 

1.376814 
1,376730 
1.376605 
1.376522 

6.332825 
6.332643 
6.332012 
6.331713 
6.331621 

25.31528 
25.31143 
25.30880 
25.30812 

1.37678 
1.376770 
1.37663 
1.37650 

6.3 3 2 7 8 
6.33260 
6.3320 
6.33167 
6.33157 

25.315 
25.311 
25.309 
25.308 

-5.018WE -08 
-1.644668-06 

1.73344E-07 
3.8196YE-07 

2.68072E-06 
-1.85559E-06 
-9.82444E-06 

6.14402E - 06 
5.68803E-05 

-1.594758 - 05 
-2.91 l89E -05 
-1.13752E-06 

1.529Y4E -05 

and b e(b-""-") is the analytical solution for the collision density on the first collision 
interval. Applying this general transcendental scheme for the lethargies in the interval 
2a < U <3a ,  a solution F3(u) can be obtained in the form 

where Z 3 ( u )  is the analytical elementary solution of the transcendental equation (79)  
with new values for &(U) and B, (u) ,  and for 

2 Z,(u) + S(u  - 2 a )  
E"_. = 

S ( u - a )  

Further, continuing the similar reasoning for the next collision interval 3a < U < 4 a  we 
obtain a collision density in the form 

where 
Z,(U - a )  + s ( u  - 2 a ) ' ~ . _ .  

S ( u - a )  
3&.-. = 

etc. 



2984 S M Perouich 

2 0.1 1.2 
1.4 
1.6 
1.8 

I2 0.1 1.2 
1.4 
1.6 
1.8 
2.0 

50 0.1 1.2 
1.4 
1.6 
1.8 
2.0 

0.882975 
0.837231 
0.790955 
0.744144 

4.382013 
4.423473 
4.371296 
4.195269 
3.858035 

17.487062 
17.903863 
17.865946 
17.188849 
15.635042 

0.8830 
0.8371 
0.7908 
0.7442 

4.3821 
4.4235 
4.3710 
4.1953 
3.85801 

17.4871 
17.9041 
17.8658 
17.1887 
15.6348 

-2.68218E-07 
-3.68800E-06 
-7.66670E-06 
- 1.2571 IE  - 05 

7.33089E -06 
3.97056E-06 

-1.23758E-05 
1.10312E-05 

-3.29814E-05 

3.27544E - 05 
l.98063E - 06 

-1.54311E-06 
-4.55993E - 06 
-1.58223E-05 

2 0.1 2.2 
2.4 
2.6 
2.8 

12 0.1 2.2 
2.4 
2.6 
2.8 
3.0 

50 0.1 2.2 
2.4 
2.6 
2.8 
3.0 

Equation (84) 
F A u )  MU) G o ( u )  

0.655735 0.6563 -5.21659E-05 
0.616706 0.6188 -5.15841E-05 
0.579742 0.5810 -4.90777E-05 
0.544882 0.5458 -4.476768-05 

3.753327 3.7532 4.09261E- 06 
3.619316 3.6191 I .  1 l307E - 05 
3.464796 3.4650 l.08875E - 05 
3.304094 3.3041 -1.45535E-OS 
3.159317 3.1593 -3.293188 -06 

15.325251 15.3253 4.19387E - 06 
14.846722 14.8468 7.69482E-06 
14.239304 14.2389 6.02365E-06 
13.580812 13.5810 1.81955E-05 

i3.003i -0.4785iE-05 15.UV5U8I 
.~ ^^_^^^ 

Equation (86) 
A CO u l a  FJu) FAu) GdU) 

2 0.1 3.2 0.481467 0.4810 -6.34351E-07 
3.4 0.452587 0.4526 -3.31954E - 06 
3.6 0.425432 0.4255 -6.01569E-07 
3.8 0.399907 0.3999 3.103128-06 

12 0.1 3.2 3.030517 3.0304 -5.14896E-06 
3.4 2.901131 2.9021 -9.371 19E -05 
3.6 2.775209 2.7750 -3.90287E-06 
3.8 2.655589 2.6553 4.905208-06 

50 0.1 3.2 12.509593 12.5120 3.92745E -06 
3.4 11.9981n 11.YYBi f.j.$j84E-M 
3.6 11.494123 11.4938 3.13228E-07 
3.8 11.016724 11.0159 -3.93677E - 06 
3.8 11.016724 l1.0159 -3.93677E - 06 
4.0 10.569499 10.5695 -1.034498 -07 
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Equation (88) 
A CO 4. FJu) Gdu) 

2 0.1 4.2 0.353366 0.3532 -6.3435 1 E - 07 
4.4 0.332167 0.33218 -3.319548-06 
4.6 0.312239 0.31228 -6.01569E-07 
4.8 0.293508 0.29351 1.103128-07 

12 0.1 4.0 2.542631 2.5400 1.186618-06 
4.3 2.381144 2.3801 -1.006148 - 06 
4.5 2.278919 2.2800 -5.39647E-06 
4.7 2.181279 2.1813 3.521oOE-06 
4.9 2.087944 2.0878 3.284268 -06 

50 0.1 4.2 10.136834 10.13679 3.92745E-06 
4.4 9.718432 9.7291 7.36484E-06 
4.6 9.3 18020 9.3179 3.13228E-06 
4.8 8.935602 8.9346 -3.936768 -06 

- 1.034498 - 07 5.0 8.568878 8.5689 

For the iethargies U >4a the equaiion (55) becomes 

z,= @(I-  c,)(eq- I ) +  ac, 

since, for U > 4afo(u) = 1/5, and Z(u )  =constant = Z,. 

has the following forms: 

(87) 

Thus, the analytical solution for the collision density on the next collision intervals 

F s ( u ) = F A u )  exp(-zn) (88) 
and, also 

F.( U )  = F4( U - ( n  - 4)a) exp(-(n -4)Z,) f o r n > 6  (89) 
where, of course, Z, is the exact solution of the transcendental equation (87). 

The transcendental equation (87) can be rewritten as 

ZOI = Bc exp(znd (90) 

Z o , = I n ( @ ~ ( y - l ) / ~ ~ ( y ) )  (91 ) 

where B , = a , ¶ ( l - c , ) e x p ( a c , - a p ( l - c o ) ) .  From section 8: 

where 

and 

Zo = Zo, +of,- ap(1- c,). (93) 
The results in this case of simple energy-dependent cross section (ideally constant) 
are identical with the results obtained with another method (Teichmann 1961, Sengupta 
et a/ 1974). It suggests that the proposed transcendental method has validity. 

The error function is defined from equation (61) as 

Gdu) =ZI(U)  - exp(Bdu)G(u)). (94) 
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Table 3. 

2 0.25 1.2 
1.4 
1.6 
1.8 

12 0.25 1.2 
1.4 
1.6 
1.8 
2.0 

50 0.25 1.2 
1.4 
1.6 
1.8 
2.0 

0.438864 
0.379441 
0.325972 
0.277929 

2.615773 
2.503461 
2.330008 
2.082753 
1.746924 

10.629728 
10.368355 
9.788049 
8.798805 
7.290762 

0.4388 
0.3794 
0.3260 
0.2781 

2.6157 
2.5031 
2.3300 
2.0830 
1.7473 

10.6301 
10.3683 
9.7881 
8.7988 
7.2908 

6.99875E-06 
-2.030698-06 
-5.264l3E-06 
-9.371638 - 06 

5.49552E-05 
3.14964E-05 

-5.776158 - 05 
-7.933268 - 05 
-2.576108-05 

0.2424% -05 
0.15313E-05 
2.284638 - 06 

-0.32486E-05 
-0.12348E-05 

2 0.25 2.2 
2.4 
2.6 
2.8 

I2 0.25 2.2 
2.4 
2.6, 
2.8 
3.0 

50 0.25 2.2 
2.4 
2.6 
2.8 
3.0 

0.200494 
0.170933 
0.145578 
0.123923 

1.595353 
1.437684 
1.280621 
1.133204 
1,007348 

6.739050 
6.124525 
5.481063 
4.860204 
, -.,,-" 

'I.,,OO"L4 

0.2005 
0.1712 
0.1455 
0.1250 

1.5952 
1.4377 
1.2805 
1.1330 
1.072 

6.7391 
6.1243 
5.4810 
4.860 
43365 

-5.99220E-06 
-2.49027E -06 
-2.583658-06 

1.34390E-05 

-6.20650E - 05 
-7.49828E-06 
-2.440988-05 
-7.421558-05 
-1.508488 -05 

0.36873E-05 
0.24768E -05 
-0.10650E - 05 
-0.358998-05 
-O.i3iZZE-05 

2 0.25 3.2 
3.4 
3.6 
3.8 

12 0.25 3.2 
3.4 
3.6 
3.8 
4.0 

50 o.zs 3.2 
3.4 
3.6 
3.8 
4.0 

0.089874 
0.076537 
0.065176 
0.055026 

0.900651 
0.802291 
0.713635 
0.635159 
0.566013 

3.9uiiYY 
3.492021 
3.1 18392 
2.787192 
2.496003 

0.0898 
0.07655 
0.06520 
0.05503 

0.8998 
0.8019 
0.7128 
0.6351 
0.5657 

3.9uib 
3.4920 
3.1184 
2.7872 
2.4960 

-3,469738 - 07 
-9.042778-06 
- 1.16750E - 06 

3.504018-06 

2.184488 - 06 
4.169958-06 
1.933678-06 

-2.29489E - 06 
-6.71612E-06 

i . 5 3 i i i B - 0 6  
5.249428-05 
2.934988-06 

-3.010568-06 
-3.214798 -07 
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Table 3. (continued) 

2 0.25 4.2 
4.4 
4.6 
4.8 
5.0 

I2 0.25 4.3 
4.4 
4.6 
4.8 
5.0 

50 0.25 4.2 
4.4 
4.6 
4.8 
5.0 

0.040252 
0.034278 
0.029191 
0.024858 
0.021 169 

0.415726 
0.448877 
0.399688 
0.355968 
0.317030 

2.233701 
1.997468 
1.786488 
1.598392 
1.4301 14 

0.040216 
0.034285 
0.029120 
0.024858 
0.021 166 

0.4747 
0.4491 
0.4001 
0.3559 
0.3168 

2.2340 
1.9975 
1.7865 
1.5984 
1.4300 

-3.46973E- 06 
-9.04277E-06 
-1.16750E- 06 

3.50400E- 06 
3.747658-07 

4.38747E-06 
4.1699%-06 
1.93367E-07 

-2.29489E-06 
-6.71612E-07 

2.5912lE-06 
5.24942E-06 
2.93498E-06 

-3.01056E-06 
-1.21479E-07 

Po-e ca!cul"iocs based on eq"atiox (S?), $4), (E), (88) ax& (94) are sho-vm in 
tables 1 , 2  and 3 for various values of co and for mass number A = 2, A = 12 and A = 50 
in the region a < U < 5a for comparison with the Teichmann series (77). 

In the numerical calculations the sum Q ( B o ( u ) y )  in equation (74) was terminated 
after N = 10 (or N = 15) or when Go< lo-'. But the rather high values of N for large 
u / a  (relative lethargy) depend on the limit equation (94). 

For practical calculations, of course, the number of terms in the series Q ( y )  can 
be reduced considerably. 

Obviously, the transcendental scheme gives an explicit expression for the nth 
collision density (equation (65)). 

But the usefulness of this transcendental approach depends, of course, on the case 
with which reasonably accurate solutions of the transcendental equation (61) may be 
obtained, especially for large absorption rates and for large mass numbers. 

The solution (65) has been calculated explicitly and exists as a satisfactory solution 
in the numerical sense, if and only if G,(u) (in (94)) satisfies the inequality 

G , ( U )  < 

With high-speed computers, this method does not appear to be restrictive. 

10. Conclusions 

Difficulties in obtaining analytical solutions to the neutron slowing down equation 
arise when the cross sections are energy-dependent. 

The present paper removes this difficulty and the slowing down equation with 
energy-dependent cross section has been analytically solved. 

Thus, a general transcendental scheme for obtaining an analytic closed-form sol- 
ution is derived. According to the author's knowledge, this is the first application of 
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a direct transcendental method to the slowing down problem with energy-dependent 
cross section. 

The method will provide accurate solutions and is generalizable to more comprehen- 
sive problem such as mixtures. A detailed study of the transcendental method for 
mixtures will be the subject of another publication. 

The suggested transcendental scheme can be routinely applied to energy-dependent 
cross section as well as to constant cross section problems. 

The given numerical transcendental method package for the evaluation of the 
collision density is essentially reduced to a transcendental equation calculation. 

References 

Barnett C S 1974 Nucl. Sci. Eng. 55 234 
Bednarz R 1961 Nucl. Sci. Eng. IO 219 
Davison B and Mandl M E 1954 Roc. Phys. Soc. A 67 967 
Davison B 1960 The Tronspart Theory of Neutronr (Moscow: Atamizdat) 
Dawn T J 1972 3. Nucl. Sei. Technol. 9 93 
Dawn T J and Yang C M 1976 Nuel. Sei. Eng. 61 142 
FenuB S and Stalk H W 1984 Theorie und Praxis der lineoren Integralgleichungen (Berlin: VEB) 

Keane A I961 Nuel. Sei. Eng. 10 117 
Marshak R E 1947 Rev. Mod. Phys. 19 185 
Murray R S 1965 7hheory and Problems ofLoploce Transforms (New York McGraw-Hill) 
Perovich S M 1990 Re. 34th Yugoslau Con5 Nucl. Eng. 
Perovich S M and Jovanovic S 1991 Proc. Int. Conf COMCONEL 
Planek G 1946 Phys. Rev. 69 423 
Presdorf Z 1988 Linejnie Integralnie Uraunenija voI 27 (Moscow: VINITI) 
Sengvpta A and Srikantiah G 1974 3. Phys. D: Appl. Phys. 7 1918 
Teiehmann T 1961 Nuel. Sei. Eng. 7 292 
Verde M and Wick G C 1947 Phys. Rev. 71 852 

JBrgens K ! p a  lineore rn!egr!?!q"ren (S!u!!gar!: T+nel) 


